Steel E-Motive: Autonomous Vehicles That Only Steel Can Make Real

Steel E-Motive: Autonomous Vehicles That Only Steel Can Make Real

The Steel E-Motive program–commissioned by WorldAutoSteel in partnership with Ricardo plc–has developed the world’s first fully autonomous electric vehicle body structure concept purpose-fit for ride-sharing. This global steel industry initiative showcases the strength and durability of steel with an eye on playing a pivotal role in reaching net zero emissions targets.

Download the Steel E-Motive Engineering Report

Here, we break down the many benefits of the Steel E-Motive concept that only Advanced High-Strength Steel (AHSS) can enable.

Steel E-Motive Was Conceived as a Level 5 Autonomous Vehicle

The Steel E-Motive concept is designed to be a Level 5 autonomous vehicle, so it does not include any driver interfaces. The design features a spacious, airy cabin with rear-facing front-passenger seat configurations. The B-pillarless structure and unique battery system design offer easy ingress and egress.

Steel E-Motive Vehicle is shown in a brick paved area with greenery

The Steel E-Motive concept is designed to be a Level 5 autonomous vehicle.

Designed to Exceed Future Mobility Safety Standards

Modern Advanced High-Strength Steels innovations allow the Steel E-Motive autonomous vehicle to exceed current global high-speed crashworthiness standards. By using AHSS, the Steel E-Motive vehicle is the first to acknowledge compliance with NHTSA and IIHS safety standards publicly.

For example, the 4-passenger B-sized urban concept SEM1 introduced a new front-end passenger protection zone. This design features the small overlap Glance Beam, which forces the car to “glance” off the barrier and reduces passenger cabin intrusion. It also lowers the crash pulse and ultimately minimizes passenger injury. Advanced High-Strength Steels also offer strong battery protection and preserve door ring integrity in this autonomous vehicle.

The Evolution of Advanced High-Strength Steel

Over the past quarter century, vehicle concept projects have showcased the continuous advancement of steel. In 1998, global steelmakers introduced the Ultralight Steel Auto Body, which used one of the earliest forms of AHSS. This project demonstrated steel’s ability to reduce weight without compromising safety.

By 2010, we introduced the Future Steel Vehicle concept. Using 27 AHSS materials, the body structure design reduced mass by over 35%. Steel materials enable these massive reductions while allowing the design to meet global crash and durability requirements.

The Steel E-Motive concepts benefit from no fewer than 64 materials under the AHSS umbrella. The “infinite tunability” of AHSS allows product customization by designers and engineers to select exactly the right steel for every need and purpose in the vehicle.

Key Attributes of the Steel E-Motive Autonomous Vehicle

From lowering the carbon footprint to massively reducing weight, the Steel E-Motive vehicle offers first-of-its-kind benefits for future mobility made possible by AHSS.

Steel allows the vehicle to reduce weight without sacrificing strength. For example, 66% of the Steel E-Motive autonomous vehicle structures’ materials have an Ultimate Tensile Strength of at least 1,000 MPa, and these materials’ weighted average tensile strength is 1259 MPa.

By using 33% Press Hardened Steels and 11% 3rd Generation AHSS, the design includes complex geometries fully formed by hot and cold-stamped gigapascal steels.

In another example, 43% of the Steel E-Motive structure is fabricated from material-efficient processes such as press hardening, hydroforming, roll forming, and roll stamping. With these processes, the steel body design maximizes material utilization and minimizes scrap rate. This means less material is produced, lowering the structure’s carbon footprint. These achievements reduce manufacturing costs to support a profitable margin both for the vehicle manufacturer and the mobility service provider.

Using AHSS, the Steel E-Motive autonomous vehicle’s body structure mass is 25% lower than benchmark vehicles of a similar volumetric footprint. Additionally, Steel E-Motive realizes a 27% lower battery frame cost than a fully enclosed battery design, with 37% mass savings.

In conclusion, the Steel E-Motive program stands as a remarkable testament to the innovative potential of steel in shaping the future of mobility and autonomous vehicles. With its groundbreaking design, the Steel E-Motive concept paves the way for Level 5 autonomous electric vehicles prioritizing safety, sustainability, and efficiency.

Harnessing the unique attributes of AHSS, this global steel industry initiative also showcases the remarkable evolution of steel materials over the years. From Ultralight Steel Auto Body to Future Steel Vehicle, the journey of AHSS has been one of continuous improvement, leading to Steel E-Motive’s exceptional achievements in weight reduction, enhanced safety, and minimized environmental impact.

As we venture into an era of net-zero emissions and advanced mobility solutions, the Steel E-Motive concept proudly positions steel as a driving force in shaping a cleaner, safer, and more connected future. 

Download the Steel E-Motive Engineering Report

Die-Free Blanking of Class A Quality & Structural Parts

Die-Free Blanking of Class A Quality & Structural Parts

You’ll find this content as part of our page on Laser Blanking, but this month, we want to highlight it in our AHSS Insights blog.  We thank Schuler North America for contributing this insightful case study.

Production of Class A quality and structural parts without a blanking die is possible, even for high-volume serial production. Laser blanking enables flexible, cost-effective, and sustainable manufacturing and is capable of reaching 45 parts per minute.  DynamicFlow Technology (DFT) from Schuler provides highly productive, die-free blanking with lasers—directly from a continuously running steel coil. DFT combines the advantages of flexible laser cutting with the speed of conventional blanking.

 

Laser Blanking Lines at a Glance

Figure 1 – Laser blanking lines offer additional flexibility over conventional blanking approaches.

Laser blanking technology addresses market challenges such as frequent die changes, the need to increase capacity, and improving plant floor utilization, material utilization, and downstream processes.

 

LASER BLANKING ELIMINATES FREQUENT DIE CHANGES 

It is important to remember that there are no dies with laser blanking technology, and no dies mean no die changes. Overall Equipment Effectiveness (OEE) of up to 80% can be achieved with laser blanking technology. In fact, 4 to 6 million parts per year of various materials are produced with the help of DFT—including mild steel, high-strength steel, and advanced high-strength steel. Even processing press-hardening steels with an aluminum-silicon coating is possible with laser blanking.  Surface and cutting quality can be maintained over this spectrum of steel grades.  Laser blanking technology can even achieve effective small batch production of Class A outer body panels and structural parts typically up to 3mm thick.

 

LASER BLANKING INCREASES PLANT OUTPUT

Competitive high-speed and high-output results can be achieved in multiple ways with laser blanking technology. The above-ground coil-fed line, optimized for short setup time, can handle coils with material widths up to 2,150 mm, weighing up to 30 tons. The material transport is smooth and controlled, simplifying setup and leading to uninterrupted processing within the laser cell.

There are three highly dynamic and simultaneously moving laser cutting heads within the laser cell of these lines. These laser cutting heads cut the programmed blank contour from a continuously moving material coil. Cutting speeds can exceed 100 meters per minute. The material is protected against any process contamination throughout the cutting process by custom-designed cutting clearance and material transport. 

Figure 2 reveals the high-speed and high-output results for outer body parts. Each part is measured by improved output per minute and hour to achieve an OEE of 80%. Laser blanking lines can achieve up to 45 parts per minute and reduce costs per blank.

High productivity achieved with laser blanking

Figure 2: High productivity achieved with laser blanking  

 

LASER BLANKING IMPROVES MATERIAL UTILIZATION

Up to 90% of blank costs are determined by the material price. The most significant leverage would be to reduce scrap and save on materials. Schuler conducted research based on the production of 300,000 cars per year, at 350 kg per car and $1,000 USD per ton of steel to provide a realistic inside look at how much cost savings can be achieved with laser blanking. The result was $1 Million USD saved with just 1% of material savings. This is extremely significant as material costs keep increasing.

Laser blanking is the digital way to cut blanks. All that’s needed to create a blanking program is a drawing to be loaded and a material to be selected. The part-specific program can be created offline and modified at any time. It is designed to create optimal combinations of material utilization and output—resulting in a high level of flexibility that significantly reduces development time for optimal blanks while also allowing for need-based production. This makes production planning easier, and it also opens the door to continuous contour optimizations for the forming process. Additionally, laser cutting does not require any gaps between individual parts due to smart nesting capabilities that cannot be achieved in comparison to die nesting or flatbed laser nesting. The combined smart, flexible nesting functions unlock new potential for material savings. Manufacturers can optimize individual blanks and eliminate the separating strip or connection bridges. Scrap savings in the forming process can also be achieved as there are no geometric restrictions due to cutting dies, and manufacturers can continuously optimize or adapt parts.

Figure 3 showcases the comparison of die nesting (the two graphics on the left) versus a laser-optimized blank contour and material savings via smart, laser blanking line nesting (the two images on the right). 

Die nesting compared with laser-optimized blank contours highlighting potential

Figure 3: Die nesting (left) compared with laser-optimized blank contours highlighting potential material savings (right)

Overall, laser blanking lines can have an equivalent throughput to conventional blanking lines, but laser blanking lines can achieve up to 10% greater material utilization.

 

You can read the full Case Study, including how laser blanking reduces infrastructure costs and improves downstream processes here: Laser Blanking Case Study

 

Schuler will present laser blanking technology, along with a variety of digital tools that create the “Press Shop of the Future” at FABTECH Chicago 2023 (booth # D41306). Tiago Vasconcellos, Sales Director at Schuler North America, will present “How Smart is Your Press Shop?” during FABTECH’s Educational Conference. The presentation will use The Smart Press Shop, a newly formed joint venture between Porsche and Schuler, as an exemplary case study for smart manufacturing standards. Attendees will discover innovative and practical ways to incorporate digitalization into production and become a state-of-the-art stamping facility directly from Schuler. 

About Schuler Group

Schuler offers customized cutting-edge technology in all areas of forming—from the networked press to press shop planning. In addition to presses, Schuler’s products include automation, dies, process know-how, and service for the entire metalworking industry. Schuler’s Digital Suite brings together solutions for networking forming technology and is continuously being developed to further improve line productivity and availability. Schuler customers include automotive manufacturers and suppliers, as well as companies in the forging, household appliance, and electrical industries. Schuler presses are minting coins for more than 180 countries. Founded in 1839 at the Göppingen, Germany headquarters, Schuler has approximately 5,000 employees at production sites in Europe, China and the Americas, as well as service companies in more than 40 countries. The company is part of the international technology group ANDRITZ.

Schuler’s global portfolio of world-renowned brands include BCN (Bliss Clearing Niagara) Technical Services, Müller Weingarten, Beutler, Umformtechnik Erfurt, SMG Pressen, Hydrap Pressen, Wilkins & Mitchell, Bêché, Spiertz Presses, Farina Presse, Liebergeld, Peltzer & Ehlers, Schleicher, and Sovema Group.

About Schuler North America

Schuler North America (Schuler), headquartered in Canton, Michigan, is the North American subsidiary of Schuler Group. Schuler provides new equipment, spare parts, and a portfolio of lifecycle services for all press systems—including preventative maintenance, press shop design and optimization, turnkey installations, retrofits for existing systems, and localized production and service. Schuler’s best-in-class position in the metalworking and materials industry serves automotive manufacturers and tier suppliers, as well as home appliance, electronics, forging, and other industries.

 

Resistance Spot Welding: 3T and 4T Dissimilar Steel Stack-ups for Automotive Applications

Resistance Spot Welding: 3T and 4T Dissimilar Steel Stack-ups for Automotive Applications

Car body-in-white (BIW) structures, such as pillars and rails, are increasingly made of complex stack-ups of advanced high-strength steels (AHSS) for vehicle lightweighting to achieve improved fuel efficiency and crashworthiness. Complex stack-ups comprise more than two sheets with similar/dissimilar steels and non-equal sheet thicknesses. 

Resistance spot welding (RSW) of complex stack-ups can be challenging, especially when a thin sheet of low-strength steel is attached to multiple thick AHSS sheets with a thickness ratio of five or higher (thickness ratio = total thickness of the stack-up/thickness of the thinnest sheet). In such a case, the heat loss is much faster on the thin sheet side than on the thick sheet side, and consequently, obtaining sufficient penetration into the thin sheet without expulsion on the thick sheet side can be challenging.

An example of two automotive applications involving complex AHSS steel stack-ups is shown below.

 

automotive applications involving complex AHSS steel stack-ups

Examples of automotive applications involving complex AHSS steel stack-ups

 

For welding 2T steel stack-ups, the weld schedule may be relatively simple and utilize just one current pulse with a specific weld time. However, typical RSW machines and controllers can customize and precisely control each parameter indicated in Figure 1.  

Spot Welding Schedule/Cycle

Figure 1: General Description of Resistance Spot Welding Schedule

 

For RSW 3T and 4T applications, more advanced schedules are needed to achieve good weld nugget penetration through all the interfaces in the stack-up. To achieve this objective,  the use of multiple current pulses with short cool time in between the pulses showed to be most effective, and in some cases, the application of a secondary force showed to be beneficial.

Figure 2 describes a method for joining the 3T stack-up using two current pulses. The first one is a short-time pulse that does not allow enough time for the electrode cooling to dominate at the top sheet, so a weld can easily form between the top and middle sheet. Once that nugget has formed, the second pulse utilizes a lower current and longer time to form the second nugget, which then grows into the first nugget to form a single weld. 

This approach can be also used with electrode force variation during the welding cycle to provide additional control of the contact resistances, but of course, it is limited to machines that are capable of varying force during the weld cycle.

Typical pulse times are 50 – 350 ms with cool times of 20 – 35 ms and current levels between 8 – 15 KA, depending on materials type and thickness. 

 

RSW Schedule for Joining 3T Stack-Up Using 2 Current Pulses

Figure 2: Example of RSW Schedule for Joining 3T Stack-Up Using 2 Current Pulses

 

A 4T stack-up example is shown in Figure 3. In this case, a similar approach was used with three current pulses applied during the weld cycle to produce a weld through all interfaces. 

The common theme in resistance spot welding all complex stack-ups is using a complex, multi-pulse weld cycle. These more complex schedules should be developed experimentally and potentially with computational modeling. Another consideration that may be beneficial in some cases is to vary the top and bottom electrode face diameter, such as that the smaller electrode face is on the thinner material side of the stack-up.

 

RSW Schedule for Joining 4T Stack-Up Using 3 Current Pulses

Figure 3: Example of an RSW Schedule for Joining 4T Stack-Up Using 3 Current Pulses

 

 

 

Thanks is given to Menachem Kimchi, Associate Professor-Practice, Dept of Materials Science, Ohio State University and Technical Editor – Joining, AHSS Application Guidelines, for this article.

Talk Like a Metallurgist

Talk Like a Metallurgist

Every industry has its own jargon. In certain settings, these words might be necessary – you wouldn’t want a cardiologist talking to a gastroenterologist about boo-boos and upset tummies. But when these professionals talk with their patients, it’s sometimes necessary for them to use much simpler words. That is, assuming the goal is to actually communicate the issues and concerns.

The steel industry is no different. We use words that have precise meanings in our daily discussions, and we forget that many people we work with don’t have exposure to the terminology that we are accustomed to using. What follows is a brief tour of the words and phrases you are likely to hear when speaking with your metallurgical representative.

Let’s start with the most common word: steel. Simply, steel is just an alloy of iron with up to about 2% carbon. Of course, other elements are in the composition. These fall into two categories: those intentionally added to improve one or more properties (called alloying elements), and those remaining from the steelmaking process that are too costly to remove relative to the benefit the removal would provide (called residual elements). High residuals are usually bad, typically because they lower ductility. But remember high is a relative term. The value may be higher than the standard to which you ordered (which is a cause for rejection), or just higher than what you’ve received in the past. If they are within the tolerance allowed within the standard, the product should still meet your strength and ductility requirements.

I’ve worked with metal formers who believe “steel is steel” and that all grades should behave the same way. According to the World Steel Association, there are more than 3,500 different grades of steel, each with unique properties and characteristics, 75% of which were developed in the past 20 years. Certainly, not all of these are sheet steels, but even within this category, there are sizable numbers. When it comes to just advanced high-strength sheet steels, more than 60 unique grades are available today.

The most common sheet steel grade is routinely called mild steel. Mild steels are low-carbon steels with no alloying elements added for substantial strengthening, and for that reason, they are characterized by relatively lower yield strength. However, there is no single grade or chemistry that meets this definition. Grade definitions require the steelmaker to meet certain chemistry or property limits. These grades are ordered to a standard usually written by the steel producer, a pertinent industry society (like ASTM, Euronorm, or JFS), or the end-user OEM. What is generally thought of as mild steel has chemistry, strength, and ductility overlapping many defined grades. Steel users should order to standards that define and constrain important properties like strength and ductility.

If you hang out with enough metallurgists, you are bound to hear passionate discussions about the iron-carbon phase diagram. (Why you are hanging around metallurgists is another topic entirely.) Before explaining the purpose of a phase diagram, it’s important to understand that a phase is a region of a material that is physically distinct, chemically uniform, and can be seen as different from the rest of the material. Ice and water are two phases that exist in my beverage. You’ll find a chocolate chip phase in my vanilla ice cream. And you’ll find ferrite in my steel – tasty! The properties of each of these change if you increase temperature (converting H2O from a solid to a liquid and eventually a gas) or if you add more alloying elements (chocolate chips or carbon). If you add a lot of that alloying element, you can get something entirely different like ripple or pearlite.

A phase diagram is a graphical representation of composition on the horizontal axis and temperature on the vertical axis. Two important phase diagrams are shown below. The far-left side of each represents 100% vanilla or 100% iron. Different phases exist as the temperature increases, or as the product is alloyed with increasing amounts of either chocolate or carbon.

 

Vanilla Chocolate Phase Diagram

Figure 1: Vanilla-Chocolate Phase Diagram A-77

 

Iron Carbon Phase Diagram

     Figure 2: Iron Carbon Phase DiagramA-78

 

Atoms arrange themselves in three-dimensional patterns called lattices. Think about billiard balls in multiple layers. The balls can be one layer directly above the prior one, or they can be shifted and rest in the crevice formed by adjacent balls in the layer below. The balls are all the same material, but the gap size changes with different arrangements. This is what happens with steel. At lower temperatures, only up to 0.02% carbon fits in the gap. This orientation is called ferrite. At higher temperatures, a different atomic orientation is stable, which we call austenite. Up to 2% carbon can fit into this arrangement of atoms. For low-carbon steels under normal conditions, austenite cannot exist at room temperature – when the steel is slowly cooled, it changes from austenite to a combination of ferrite and a mixture of phases called pearlite. However, heating a certain chemistry to the austenitic zone followed by rapidly cooling just right bypasses the natural conversion to ferrite and pearlite, and creates a structure that contains austenite at room temperature. This leads to the term retained austenite, which is the phase that gives TRIP and 3rd Generation Steels excellent ductility. More on these later.

100% iron is very soft. As a matter of fact, 100% of any element is very soft. As an example, think about gold. 24-carat gold is pure gold. You might think that a wedding ring, as a symbol of long-lasting love and devotion, should be made from 100% gold. In reality, many gold bands are made from 12-carat gold, which is half gold and half impurities. (Showing your love by giving something 50% impure perhaps is not the best marketing approach.) Adding alloying elements to gold is done to improve certain characteristics, like strength, making the alloy appropriate for the applications it serves.

When we talk about ferrite at room temperature, that’s iron with no more than 80 parts per million carbon. That’s really close to pure iron, so when we hear the term ferrite, we should think of something that is really soft, low-strength, and very ductile.

If additional strength is needed, then more alloying elements must be used in addition to carbon. The next most cost-effective alloying element is manganese which produces higher-strength steels called carbon-manganese steels. These are substitutional solid solutions strengthened, where the atoms of manganese swap into where atoms of iron would otherwise go. These grades have limited ductility, especially at higher carbon and manganese contents, so they are used in structural applications that do not need a lot of formability and are therefore also called structural steels (SS). In the ASTM standard specification covering many sheet steels, ASTM A1008/A1008M, these grades are grouped in the SS category.

Around 1980, steelmakers rolled out a new approach to getting higher strength levels while minimizing the loss of elongation usually seen with higher strengths. They do this by strengthening the ferrite through the addition of very small quantities of titanium, niobium, and vanadium to form carbide and nitride precipitates. These microalloying additions are used in precipitation hardening of the ferrite to create High Strength Low Alloy (HSLA) steels.

Switching gears a bit to discuss something unrelated to sheet steel but a process with which we might be familiar: forged gears. We want forged gears to be hard and high strength. Typical production of gears involves heating up a steel alloy of certain chemistry, followed by rapid cooling (quenching) them faster than a critical cooling rate. The structure that’s produced is called martensite. If the quench rate is only a little too slow, a different phase called bainite can be produced. While martensite is the highest strength phase, it has limited elongation. Bainite is a little lower in strength but has higher elongation and toughness compared with martensite. Bainite shines in applications needing cut-edge ductility during stretch flanging.

Martensite wasn’t commonly found as a microstructural component during most of the history of automotive sheet steels due to the limited number of companies having an annealing line with appropriate quenching capabilities. This started to change around the turn of the millennium when newer annealing lines were installed with the ability to hold at a specific temperature which may be lower than the annealing temperature followed by quenching to another much lower temperature. This led to greater production of the first generation of Advanced High-Strength Steels (AHSS), including grades that have a microstructure of only martensite

Dual Phase steels are the most common AHSS. As you might guess, there are two phases in Dual-Phase steels. Ferrite and martensite are the two phases: ferrite is super-soft and comprises the majority of the microstructure, while martensite is super-hard and takes up 10% (590DP) to 40% (980DP) of the microstructure. The more martensite, the stronger the steel. Elongation is the ductility measured in a tensile test, and since most of the structure is ferrite, these steels have exceptional elongation for the strength level. However, there is a large hardness difference between ferrite and martensite, leading to crack initiation sites and resulting in poor cut-edge ductility during stretch flanging.

[A brief digression on testing. Tensile testing takes a standard sample shape, typically looking like a bone you might give a dog to chew on, and pulls it in tension from the edges. The test results include yield strength, tensile strength, and total elongation, commonly called the YTEs or TYEs based on the initials. More information comes out of the tensile test, covered elsewhere. However, the tensile test is usually not used to measure cut-edge ductility. Cut edge ductility is typically characterized by the hole expansion test, where a punched hole is expanded with a conical punch until a through-thickness crack forms.]

Ferrite-bainite steels have a combination of decent elongation (from the ferrite) and excellent cut-edge ductility (from the bainite). Yes, your assumption is correct that there are only two phases in these steels, with ferrite being about 85% of the microstructure. Due to the way these are produced, ferrite-bainite steels are available as hot-rolled products only. That’s in contrast with Complex Phase (CP) steels, which can be found either at hot-rolled or cold-rolled thicknesses.

Soft ferrite is the primary microstructural component in DP steels and the soon-to-be-discussed TRIP steels, which results in low yield strength and relatively high elongation. On the other hand, the primary microstructural components of complex phase steels are bainite and precipitation-strengthened ferrite, with martensite and retained austenite also present in lower amounts. Lacking soft ferrite, these steels have relatively high yield strength and low elongation as measured in a tensile test, but the bainite leads to exceptional cut-edge ductility as measured in a hole expansion test. Multi-phase steels are a related product. Some OEMs group CP and MP steels in the same category, while others say that CP steels are engineered to favor improved bendability and cut edge extension over tensile elongation at the same tensile strength and that MP steels target balancing the fracture resistance needed for better bendability and hole expansion with the necking resistance found with higher uniform elongation and n-value.

TRIP steels contain mostly ferrite surrounding islands of martensite, as well as some bainite and retained austenite. The amount of bainite is pretty low, so it doesn’t add much to the cut-edge ductility. But the magic is in the retained austenite. Austenite is a very ductile phase. What makes this a special phase is that as austenite-containing steels deform, the atoms rearrange and the austenite transforms into martensite, giving the steel enhanced ductility. (Jargon alert: Another word for ductility used by professionals is plasticity.) A quick review: this enhanced ductility comes from austenite transforming to martensite. In other words, these steels have Transformation Induced Plasticity (TRIP).

Wouldn’t it be great to have an alloy that was just austenite? We’d have a high-strength, high-ductility product. There are two types of steels that are in this category. First are austenitic stainless steels in the 3XX family, like SS304 and SS316. In these alloys, austenite is stable at room temperature, but these require approximately 18% chromium and 8% nickel. Next are TWIP steels. These may look like TRIP steels from how they are written, but these steels get their plasticity differently. TWIP steels deform by a mechanism known as twinning, so they are described as Twinning Induced Plasticity Steels (TWIP). Of course, there are no free lunches. To get fantastic formability properties, a lot of alloying is necessary. This drives up the steelmaking complexity and cost. The alloying elements also make welding much more challenging. TWIP steels are called second-generation advanced high-strength steels.

The 3rd Generation Advanced High-Strength Steels (3rd Gen AHSS or 3rd Gen) are made possible by another advance in annealing technology, allowing steelmakers to produce a refined microstructure. Nearly all 3rd Gen steels have retained austenite in the microstructure and therefore benefit from a high strength, high ductility combination. The latest annealing lines used to make these steels come equipped to not just hold and quench to defined temperatures but have reheating capability followed by another hold and quench to different temperature targets. This allows for the creation of an engineered balance and distribution of ferrite, bainite, martensite, and austenite in the microstructure.

The resultant tensile property ranges from 3rd Gen steels produced at different companies may be similar, but their methods of getting those properties are a function of chemistry and the capabilities and characteristics of the equipment used to produce them. A different chemistry approach may result in different weldability, for example, so users are encouraged to perform thorough due diligence before switching suppliers. The days of steel being simply a commodity are in the past as it relates to these highly engineered higher strength steels.

 

Final thought 1: What’s an MPa?

This note may have a global readership, but this answer is focused on the countries that haven’t embraced the metric system. Megapascals, abbreviated MPa, is a measure of strength, just like pounds per square inch (psi) or force per area. Like Celsius and Fahrenheit or inches and millimeters, we can convert between them easily enough. There are 1000 psi in a ksi, with k being the abbreviation for kilopounds. And there are 6.895 ksi in an MPa. Make your life easier and focus on a 7:1 difference. 100 ksi is about 700 MPa.

 

Final thought 2: What about Press Hardening Steels?

Press hardening steel for hot stamping is a separate topic with a lot of nuances. One of the biggest differences is how the properties develop. For cold stamping operations, the stamping company is responsible for creating the formed part from sheet metal supplied to the necessary strength. With press hardening steels, the stamping company creates both the shape and the strength. Different grades come from a combination of different chemistries from the steelmaker and different heating and cooling profiles at the stamping location. The chosen corrosion protection approach impacts the various options. Learn more at the Press Hardening Primer on this site.

 

Final thought 3: Don’t hesitate to ask questions.

If your metallurgical representative says something that you don’t understand, ask for clarification. Your suppliers want to be your valued partner for more than just a simple transaction. Quite likely, your met rep is passionate about their offerings and would love to talk about them. If you get a deeper understanding of what makes one product different from another, then you’ll be in a better position to weigh the benefits against the inevitable constraints, leading to an optimized material selection. Remember, communication is the key to success for all parties.

 

Thanks go to author Daniel J. Schaeffler, Ph.D., President, Engineering Quality Solutions, Inc.

Danny Schaeffler is the Metallurgy and Forming Technical Editor of the AHSS Applications Guidelines available from WorldAutoSteel.  He is founder and President of Engineering Quality Solutions (EQS).  Danny writes the monthly “Metal Matters” column for Metalforming Magazine, and provides seminars on sheet metal formability for the Precision Metalforming Association.  He has written for Stamping Journal and The Fabricator, and has lectured at FabTech.  Danny is passionate about training new and experienced employees at manufacturing companies about how sheet metal properties impact their forming success.

 

 

Roll Forming

Roll Forming

Roll Forming
Case Study: How Steel Properties Influence the Roll Forming Process
Coil Shape Imperfections Influencing Roll Forming
Roll Stamping

 

Roll Forming

Roll Forming takes a flat sheet or strip and feeds it longitudinally through a mill containing several successive paired roller dies, each of which incrementally bends the strip into the desired final shape. The incremental approach can minimize strain localization and compensate for springback. Therefore, roll forming is well suited for generating many complex shapes from Advanced High-Strength Steels, especially from those grades with low total elongation, such as martensitic steel. The following video, kindly provided by Shape Corp.S-104, highlights the process that can produce either open or closed (tubular) sections.

The number of pairs of rolls depends on the sheet metal grade, finished part complexity, and the design of the roll-forming mill. A roll-forming mill used for bumpers may have as many as 30 pairs of roller dies mounted on individually driven horizontal shafts.A-32

Roll forming is one of the few sheet metal forming processes requiring only one primary mode of deformation. Unlike most forming operations, which have various combinations of forming modes, the roll-forming process is nothing more than a carefully engineered series of bends. In roll forming, metal thickness does not change appreciably except for a slight thinning at the bend radii.

Roll forming is appropriate for applications requiring high-volume production of long lengths of complex sections held to tight dimensional tolerances. The continuous process involves coil feeding, roll forming, and cutting to length. Notching, slotting, punching, embossing, and curving combine with contour roll forming to produce finished parts off the exit end of the roll-forming mill. In fact, companies directly roll-form automotive door beam impact bars to the appropriate sweep and only need to weld on mounting brackets prior to shipment to the vehicle assembly line.A-32 Figure 1 shows an example of automotive applications that are ideal for the roll-forming process.

Figure 1: Body components that are ideally suited for roll-forming.

Figure 1: Body components that are ideally suited for roll-forming.

 

Roll forming can produce AHSS parts with:

  • Steels of all levels of mechanical properties and different microstructures.
  • Small radii depending on the thickness and mechanical properties of the steel.
  • Reduced number of forming stations compared with lower strength steel.

However, the high sheet-steel strength means that forces on the rollers and frames in the roll-forming mill are higher. A rule of thumb says that the force is proportional to the strength and thickness squared. Therefore, structural strength ratings of the roll forming equipment must be checked to avoid bending of the shafts. The value of minimum internal radius of a roll formed component depends primarily on the thickness and the tensile strength of the steel (Figure 2).

Figure 2: Achievable minimum r/t values for bending and roll forming for different strength and types of steel.S-5

Figure 2: Achievable minimum r/t values for bending and roll forming for different strength and types of steel.S-5

 

As seen in Figure 2, roll forming allows smaller radii than a bending process. Figure 3 compares CR1150/1400-MS formed with air-bending and roll forming. Bending requires a minimum 3T radius, but roll forming can produce 1T bends.S-30

Figure 3: CR1150/1400-MS (2 mm thick) has a minimum bend radius of 3T, but can be roll formed to a 1T radius.S-30

Figure 3: CR1150/1400-MS (2 mm thick) has a minimum bend radius of 3T, but can be roll formed to a 1T radius.S-30

 

The main parameters having an influence on the springback are the radius of the component, the sheet thickness, and the strength of the steel. As expected, angular change increases for increased tensile strength and bend radius (Figure 4).

Figure 4: Angular change increases with increasing tensile strength and bend radii.A-4

Figure 4: Angular change increases with increasing tensile strength and bend radii.A-4

 

Figure 5 shows a profile made with the same tool setup for three steels at the same thickness having tensile strength ranging from 1000 MPa to 1400 MPa. Even with the large difference in strength, the springback is almost the same.

Figure 5: Roll formed profile made with the same tool setup for three different steels. Bottom to Top: CR700/1000-DP, CR950/1200-MS, CR1150/1400-MS.S-5

Figure 5: Roll formed profile made with the same tool setup for three different steels. Bottom to Top: CR700/1000-DP, CR950/1200-MS, CR1150/1400-MS.S-5

Citation A-33 provides guidelines for roll forming High-Strength Steels:

  • Select the appropriate number of roll stands for the material being formed. Remember the higher the steel strength, the greater the number of stands required on the roll former.
  • Use the minimum allowable bend radius for the material in order to minimize springback.
  • Position holes away from the bend radius to help achieve desired tolerances.
  • Establish mechanical and dimensional tolerances for successful part production.
  • Use appropriate lubrication.
  • Use a suitable maintenance schedule for the roll forming line.
  • Anticipate end flare (a form of springback). End flare is caused by stresses that build up during the roll forming process.
  • Recognize that as a part is being swept (or reformed after roll forming), the compression of metal can cause sidewall buckling, which leads to fit-up problems.
  • Do not roll form with worn tooling, as the use of worn tools increases the severity of buckling.
  • Do not expect steels of similar yield strength from different steel sources to behave similarly.
  • Do not over-specify tolerances.

Guidelines specifically for the highest strength steelsA-33:

  • Depending on the grade, the minimum bend radius should be three to four times the thickness of the steel to avoid fracture.
  • Springback magnitude can range from ten degrees for 120X steel (120 ksi or 830 MPa minimum yield strength, 860 MPa minimum tensile strength) to 30 degrees for M220HT (CR1200/1500-MS) steel, as compared to one to three degrees for mild steel. Springback should be accounted for when designing the roll forming process.
  • Due to the higher springback, it is difficult to achieve reasonable tolerances on sections with large radii (radii greater than 20 times the thickness of the steel).
  • Rolls should be designed with a constant radius and an evenly distributed overbend from pass to pass.
  • About 50 percent more passes (compared to mild steel) are required when roll forming ultra high-strength steel. The number of passes required is affected by the number of profile bends, mechanical properties of the steel, section depth-to-steel thickness ratio, tolerance requirements, pre-punched holes and notches.
  • Due to the higher number of passes and higher material strength, the horsepower requirement for forming is increased.
  • Due to the higher material strength, the forming pressure is also higher. Larger shaft diameters should be considered. Thin, slender rolls should be avoided.
  • During roll forming, avoid undue permanent elongation of portions of the cross section that will be compressed during the sweeping process.

Roll forming is applicable to shapes other than long, narrow parts. For example, an automaker roll forms their pickup truck beds allowing them to minimize thinning and improve durability (Figure 6). Reduced press forces are another factor that can influence whether a company roll forms rather than stamps truck beds.

Figure 6: Roll Forming can replace stamping in certain applications.G-9

Figure 6: Roll Forming can replace stamping in certain applications.G-9

Traditional two-dimensional roll forming uses sequential roll stands to incrementally change flat sheets into the targeted shape having a consistent profile down the length. Advanced dynamic roll forming incorporates computer-controlled roll stands with multiple degrees of freedom that allow the finished profile to vary along its length, creating a three-dimensional profile. The same set of tools create different profiles by changing the position and movements of individual roll stands. In-line 3D profiling expands the number of applications where roll forming is a viable parts production option.

One such example are the 3D roll formed tubes made from 1700 MPa martensitic steel for A-pillar / roof rail applications in the 2020 Ford Explorer and 2020 Ford Escape (Figure 7).  Using this approach instead of hydroforming created smaller profiles resulting in improved driver visibility, more interior space, and better packaging of airbags. The strength-to-weight ratio improved by more than 50 percent, which led to an overall mass reduction of 2.8 to 4.5 kg per vehicle.S-104

Figure 7: 3D Roll Formed Profiles in 2020 Ford Vehicles using 1700 MPa martensitic steel.S-104

Figure 7: 3D Roll Formed Profiles in 2020 Ford Vehicles using 1700 MPa martensitic steel.S-104

 

Roll forming is no longer limited to producing simple circular, oval, or rectangular profiles. Advanced cross sections such
as those shown in Figure 8 provided by Shape Corporation highlight some profile designs aiding in body structure
stiffness and packaging space reductions.

Roll Form Designs

Figure 8: Roll forming profile design possibilities. Courtesy of Shape Corporation.

 

In summary, roll forming can produce AHSS parts with steels of all levels of mechanical properties and different microstructures with a reduced R/T ratio versus conventional bending. All deformation occurs at a radius, so there is no sidewall curl risk and overbending works to control angular springback.

 

Case Study: How Steel Properties Influence the Roll Forming Process

Many thanks to Brian Oxley, Product Manager, Shape Corporation, and Dr. Daniel Schaeffler, President, Engineering Quality Solutions, Inc., for providing this case study.

Optimizing the use of roll forming requires understanding how the sheet metal behaves through the process.
Making a bend in a roll formed part occurs only when forming forces exceed the metal’s yield strength, causing plastic
deformation to occur. Higher strength sheet metals increase forming force requirements, leading to the need to have
larger shaft diameters in the roll forming mill. Each pass must have greater overbend to compensate for the increasing
springback associated with the higher strength.

Figure 9 provides a comparison of the loads on each pass of a 10-station roll forming line when forming either AISI 1020
steel (yield strength of 350 MPa, tensile strength of 450 MPa, elongation to fracture of 15%) or CR1220Y1500T-MS, a
martensitic steel with 1220 MPa minimum yield strength and 1500 MPa minimum tensile strength.

Graph showing pass loads with maximum force levels. Gold and purple 3D bar chart

Figure 9: Loads on each pass of a roll forming line when forming either AISI 1020 steel (450 MPa tensile
strength) or a martensitic steel with 1500 MPa minimum tensile strength. Courtesy of Roll-Kraft.

 

Although a high-strength material requires greater forming loads, grades with higher yield strength can resist stretching
of the strip edge and prevent longitudinal deformations such as twisting or bow. Flange edge flatness after forming
either AISI 1020 or CR1220Y1500T-MS is presented in Figure 10.

Figure 10: Simulation results showing flange edge flatness of a) AISI 1020 and b) CR1220Y1500T-MS.
Assumptions for the simulation: AISI 1020 yield strength = 350 MPa; CR1220Y1500T yield strength = 1220 MPa.
Higher yield strength leads to better flatness.

 

Force requirements for piercing operations are a function of the sheet tensile strength. High strains in the part design
exceeding uniform elongation resulting from loads in excess of the tensile strength produces local necking, representing
a structural weak point. However, assuming the design does not produce these high strains, the tensile strength has only
an indirect influence on the roll forming characteristics.

Yield strength and flow stress are the most critical steel characteristics for roll forming dimensional control. Receiving
metal with limited yield strength variability results in consistent part dimensions and stable locations for pre-pierced
features.

Flow stress represents the strength after some amount of deformation, and is therefore directly related to the degree of
work hardening: starting at the same yield strength, a higher work hardening steel will have a higher flow stress at the
same deformation.

Two grades are shown in Figure 11: ZE 550 and CR420Y780T-DP. ZE 500, represented by the red curve, is a recovery
annealed grade made by Bilstein having a yield strength range of 550 to 625 MPa and a minimum tensile strength of 600
MPa, while CR420Y780T-DP, represented by the blue curve, is a conventional dual phase steel with a minimum yield
strength of 420 MPa and a minimum tensile strength of 780 MPa. For the samples tested, ZE 550 has a yield strength of
approximately 565 MPa, where that for CR420Y780T-DP is much lower at about 485 MPa. Due to the higher work
hardening (n-value) of the DP steel, its flow stress at 5% strain is 775 MPa, while the flow stress for the HSLA grade at 5%
strain is 620 MPa.

In conventional stamping operations, this work hardening is beneficial to delay the onset of necking. However, use of
dual-phase steels and other grades with high n-value can lead to dimensional issues in roll-formed parts. Flow stress in a
given area is a function of the local strain. Each roll station induces additional strain on the overall part, and strains vary
within the part and along the edge. This strength variation is responsible for differing springback and edge wave across
a roll-formed part.

Unlike conventional stamping, grades with a high yield/tensile ratio where the yield strength is close to the tensile
strength are better suited to produce straight parts via roll forming.

Line graph of stress/strain curves

Figure 11: Stress-strain curves for CR420Y780T-DP (blue) and ZE 550 (red). See text for description of the grades.

 

Total elongation to fracture is the strain at which the steel breaks during tensile testing, and is a value commonly
reported on certified metal property documents (cert sheets). As observed on the colloquially called “banana diagram”,
elongation generally decreases as the strength of the steel increases.

For lower strength steels, total elongation is a good indicator for a metal’s bendability. Bend severity is described by the
r/t ratio, or the ratio of the inner bend radius to the sheet thickness. The metal’s ability to withstand a given bend can be
approximated by the tensile test elongation, since during a bend, the outermost fibers elongate like a tensile test.

In higher strength steels where the phase balance between martensite, bainite, austenite, and ferrite play a much larger
role in developing the strength and ductility than in other steels, bendability is usually limited by microstructural
uniformity. Dual phase steels, for example, have excellent uniform elongation and resistance to necking coming from
the hardness difference between ferrite and martensite. However, this large hardness difference is also responsible for
relatively poor edge stretchability and bendability. In roll forming applications, those grades with a uniform
microstructure will typically have superior performance. As an example, refer to Figure 11. The dual phase steel shown
in blue can be bent to a 2T radius before cracking, but the recovery annealed ZE 550 grade with noticeably higher yield
strength and lower elongation can be bent to a ½T radius.

Remember that each roll forming station only incrementally deforms the sheet, with subsequent stations working on a
different region. Roll formed parts do not need to use grades associated with high total elongation, especially since
these typically have a bigger gap between yield and tensile strength.

 

Coil Shape Imperfections Influencing Roll Forming

Along with the mechanical properties of steel, physical shape attributes of the sheet or coil can influence the roll
forming process. These include center buckle, coil set, cross bow, and camber. Receiving coils with these imperfections
may result in substandard roll formed parts.

Flatness is paramount when it comes to getting good shape on roll formed parts. Individual OEMs or processors may
have company-specific procedures and requirements, while organizations like ASTM offer similar information in the
public domain. ASTM A1030/A1030M is one standard covering the practices for measuring flatness, and specification
ASTM A568/A568M shows methods for characterizing longitudinal waves, buckles, and camber. 

Center buckle (Figure 12), also known as full center, is the term to describe pockets or waves in the center or quarter
line of the strip. The height of pocket varies from 1/6” to 3/4”. Center buckle occurs when the central width portion of
the master coil is longer than the edges. This over-rolling of the center portion might occur when there is excessive
crown in the work roll, build-up from the hot strip mill, a mismatched set of work rolls, improper use of the benders, or
improper rolling procedures. A related issue is edge buckle presenting as wavy edges, originating when the coil edges
are longer than the central width position.

Center Buckle

Figure 12: Coil shape imperfection: Center Buckle

 

Coil set (Figure 13a), also known as longitudinal bow, occurs when the top surface of the strip is stretched more than the
bottom surface, causing a bow condition parallel with the rolling direction. Here, the strip exhibits a tendency to curl
rather than laying flat. To some extent, coil set is normal, and easy to address with a leveler. Severe coil set may be
induced by an imbalance in the stresses induced during rolling by the thickness reduction work rolls. Potential causes include different diameters or surface speeds of the two work rolls, or different frictional conditions along the two arcs
of contact.

Crossbow (Figure 13b) is a bow condition perpendicular to the rolling direction, and arcs downward from the high point
in the center position across the width of the sheet. Crossbow may occur if improper coil set correction practices are
employed.

Figure 13: Coil shape imperfections: A) Coil set and B) Crossbow

Figure 13: Coil shape imperfections: A) Coil set and B) Crossbow A-30

 

Camber (Figure 14) is the deviation of a side edge from a straight edge, and results when one edge of the steel is
elongated more than the other during the rolling process due to a difference in roll diameter or speed. The maximum
allowable camber under certain conditions is contained within specification ASTM A568/A568M, among others.

Figure 14 - Camber

Figure 14: Coil shape imperfection: Camber

 

Coil shape imperfections produce residual stresses in the starting material. These residual stresses combined with the
stresses from forming lead to longitudinal deviations from targeted dimensions after roll forming. Some of the resultant
shapes of roll formed components made from coils having these issues are shown in Figure 15. Leveling the coil prior to
roll forming may address some of these shape concerns, and has the benefit of increasing the yield strength, making a
more uniform product.

Figure 15

Figure 15: Shape deviations in roll formed components initiating from incoming coil shape issues:
a) camber  b) longitudinal bow  c) twist  d) flare  e) center wave (center buckle)  f) edge wave. H-66

 

Roll Stamping

Traditional roll forming creates products with essentially uniform cross sections.  A newer technique called Roll Stamping enhances the ability to create shapes and features which are not in the rolling axis.

Using a patented processA-48, R-9, forming rolls with the part shape along the circumferential direction creates the desired form, as shown in Figure 16.

Figure 7: Roll Stamping creates additional shapes and features beyond capabilities of traditional roll forming. (Reference 1)

Figure 16: Roll Stamping creates additional shapes and features beyond capabilities of traditional roll forming. A-48

 

This approach can be applied to a conventional roll forming line.  In the example of an automotive door impact beam, the W-shaped profile in the central section and the flat section which attaches to the door inner panel are formed at the same time, without the need for brackets or internal spot welds (Figure 17). Sharp corner curvatures are possible due to the incremental bending deformation inherent in the process.

Figure 8: A roll stamped door beam formed on a conventional roll forming line eliminates the need for welding brackets at the edges. (Reference 2)

Figure 17: A roll stamped door part formed on a conventional roll forming line eliminates the need for welding brackets at the edges.R-9

 

A global automaker used this method to replace a three-piece door impact beam made with a 2.0 mm PHS-CR1500T-MB press hardened steel tube requiring 2 end brackets formed from 1.4 mm CR-500Y780T-DP to attach it to the door frame, shown in Figure 18. The new approach, with a one-piece roll stamped 1.0 mm CR900Y1180T-CP complex phase steel impact beam, resulted in a 10% weight savings and 20% cost savings.K-58 This technique started in mass production on a Korean sedan in 2017, a Korean SUV in 2020, and a European SUV in 2021.K-58

Figure 10: Some Roll Stamping Automotive Applications (Citation D)

Figure 18: Some Roll Stamping Automotive Applications.K-58

 

Photo of Brian OxleyThanks are given to Brian Oxley, Product Manager, Shape Corporation, for his contributions to the Roll Forming Case Study and Coil Shape Imperfections section. Brian Oxley is a Product Manager in the Core Engineering team at Shape Corp. Shape Corp. is a global, full-service supplier of lightweight steel, aluminum, plastic, composite and hybrid engineered solutions for the automotive industry. Brian leads a team responsible for developing next generation products and materials in the upper body and closures space that complement Shape’s core competency in roll forming. Brian has a Bachelor of Science degree in Material Science and Engineering from Michigan State University.

High Strain Rate Testing

High Strain Rate Testing

Dynamic tensile testing of sheet steels is becoming more important due to the need for more optimized vehicle crashworthiness analysis in the automotive industry. Positive strain rate sensitivity (strength increases with strain rate) as an example, offers a potential for improved energy absorption during a crash event. New systems have been developed in recent years to meet the increasing demand for dynamic testing.

Three important points collectively highlight the need for high-speed testing:

  • Tensile properties and fracture behavior change with strain rate.
  • Conventional tensile tests using standard dogbone shapes take on the order of 1 to 2 minutes depending on the grade.
  • An entire automotive crash takes on the order of 100 milliseconds, with deformation rates 10,000 to 100,000 faster than conventional testing speeds.

Characterizing the response during high-speed testing provides critical information used in crash simulations, but these tests often require upgraded equipment and procedures. Conventional tensile testing equipment may lack the ability to reach the required speeds (on the order of 20 m/s). Sensors for load and displacement must acquire accurate data during tests which take just a few milliseconds.

Higher speed tensile and fracture characterization also aids in predicting the properties of stamped parts, as deformation rates in stamping are 100 to 1,000 times higher than most testing rates.

Steel alloys possess positive strain rate sensitivity, or m-value, meaning that strength increases with strain rate. This has benefits related to improved crash energy absorption.

Characterizing this response requires use of robust testing equipment and practices appropriate for the targeted strain rate. Some techniques involve a tensile or compressive Split Hopkinson (Kolsky) Bar, a drop tower or impact system, or a high-speed servo-hydraulic system. Historically, no guidelines were available as to the testing method, specimen dimensions, measurement devices, and other important issues which are critical to the quality of testing results. As a result, data from different laboratories were often not comparable. A WorldAutoSteel committee evaluated various procedures, conducted several round-robins, and developed a recommended procedure, which evolved into what are now both parts of ISO 26203, linked below.

Published standards addressing tensile testing at high strain rates include:

The specific response as a function of strain rate is grade dependent. Some grades get stronger and more ductile as the strain rate increases (left image in Figure 1), while other grades see primarily a strength increase (right image in Figure 1). Increases are not linear or consistent with strain rate, so simply scaling the response from conventional quasi-static testing does not work well. Strain hardening (n-value) also changes with speed in some grades, as suggested by the different slopes in the right image of Figure 1. Accurate crash models must also consider how strain rate sensitivity impacts bake hardenability and the magnitude of the TRIP effect, both of which are further complicated by the strain levels in the part from stamping.

Figure 1: Two steels with different strength/ductility response to increasing strain rate.A-7

Figure 1: Two steels with different strength/ductility response to increasing strain rate.A-7