X

Effect of GA Coating Weight on PHS

This studyR-25, conducted by the Centre for Advanced Materials Joining, Department of Mechanical & Mechatronics Engineering, University of Waterloo, and ArcelorMittal Global Research, utilized 2mm thick 22MnB5 steel with three different coating thicknesses, given in Table 1. The fiber laser welder used 0.3mm core diameter, 0.6mm spot size, and 200mm beam focal length. The trials were done with a 25° head angle with no shielding gas but high pressure air was applied to protect optics. Welding passes were performed using 3-6kW power increasing by 1 kW and 8-22m/min welding speed increasing by 4m/min. Compared to the base metal composition of mostly ferrite with colonies of pearlite, laser welding created complete martensitic composition in the FZ and fully austenized HAZ while the ICHAZ contained martensite in the intergranular regions where austenization occurred.

Table 1: Galvanneal Coatings.R-25

 

 

Figure 1: Base metal microstructure(P=pearlite, F=ferrite, Γ=Fe3Zn10, Γ1=Fe5Zn21 and δ=FeZn10).R-25

 

Figure 2: Welded microstructure — (a) overall view, (b) HAZ, (c) ICHAZ at low and (d) high magnifications, (e) UCHAZ (f) FZ, and (g) coarse-lath martensitic structure (where M; martensite, P: pearlite, F: ferrite).R-25

 

Given the lower boiling temperature of Zn at 900 °C as compared to Fe, the interaction of the laser with the Zn plasma that forms upon welding affects energy deliverance and depth of penetration. Lower coating weight of (100 g/m2) resulted in a larger process window as compared to (140 g/m2). Increased coating weight will reduce process window and need higher power and lower speeds in order to achieved proper penetration as shown in Figure 3 and Figure 4. Depth of penetration due to varying welding parameters was developed:

d=(H-8.6+0.08C)/(0.09C-4.8)

[d= depth of penetration(mm), H= heat input per unit thickness(J/mm2), C= coating weight(g/m2)]

Given the reduction in power deliverance, with an increase in coating weight there will be an expected drop in FZ and HAZ width. Regardless of the coating thickness, the HAZ maintained its hardness between BM and FZ. No direct correlation between coating thickness and YS, UTS, and elongation to fracture levels were observed. This is mainly due to the failure location being in the BM.

Figure 3: Process map of the welding window at coating weight of (a) 100 g/m2, (b) 120 g/m2, and (c) 140 g/m2.R-25

 

Figure 4: Heat input per unit thickness vs depth of penetration.R-25

Related Posts
Filter by
Post Page
Press Hardened Steels Joining Arc Welding Coatings Solid State Welding Resistance Spot Welding main-blog homepage-featured-top Blog Joining Dissimilar Materials Resistance Welding Processes RSW of Dissimilar Steel RSW Modelling and Performance
Sort by

Role of Coatings in the Formation of Defects in AHSS Welds

A common issue when welding Advanced High-Strength Steels (AHSS) is with protective coatings causing weld defects. A

18

Coating Friction

Friction during the stamping process is a key variable which impacts metal flow. It

18

Coatings

topofpage

18

Effect GA-Coating Evolution PHS

This article summarizes a paper, entitled “Effect of GA-Coating Evolution during Press-Hardening on Fiber

18

Coating Effects

One of the methods by which the coatings are applied to the steel sheet surface is through a process called

18

AHSS Corrosion Resistant Coatings

Many steel parts on a vehicle require corrosion protection, regardless of whether they are exposed or unexposed

18

Steel E-Motive Battery Carrier Frame System and Laser Welded Door Ring Feature Part Integration to Reduce Mass and Cost

The Steel E-Motive concept features an innovative battery housing design and laser welded blank door ring created

8

Part Consolidation in an EV World

Tailor-welded blanks (TWBs) allow the combination of different steel grades, thicknesses, and even coating types

8

Resistance Spot Welding AHSS to Magnesium

This blog is a short summary of a published comprehensive research work titled:

8

Kate Hickey:
Related Post