Transformation Induced Plasticity (TRIP)

Transformation Induced Plasticity (TRIP)

topofpage

Metallurgy

The microstructure of Transformation Induced Plasticity (TRIP) steels contains a matrix of ferrite, with retained austenite, martensite, and bainite present in varying amounts. Production of TRIP steels typically requires the use of an isothermal hold at an intermediate temperature, which produces some bainite. Higher silicon and carbon content of TRIP steels result in significant volume fractions of retained austenite in the final microstructure. Figure 1 shows a schematic of TRIP steel microstructure, with Figure 2 showing a micrograph of an actual sample of TRIP steel. Figure 3 compares the engineering stress-strain curve for HSLA steel to a TRIP steel curve of similar yield strength.

 

Figure 1: Schematic of a TRIP steel microstructure showing a matrix of ferrite, with martensite, bainite and retained austenite as the additional phases.

Figure 1: Schematic of a TRIP steel microstructure showing a matrix of ferrite, with martensite, bainite and retained austenite as the additional phases.

 

Figure 2: Micrograph of Transformation Induced Plasticity steel.

Figure 2: Micrograph of Transformation Induced Plasticity steel.

 

Figure 3: A comparison of stress strain curves for mild steel, HSLA 350/450, and TRIP 350/600.K-1

Figure 3: A comparison of stress strain curves for mild steel, HSLA 350/450, and TRIP 350/600.K-1

 

 

During deformation, the dispersion of hard second phases in soft ferrite creates a high work hardening rate, as observed in the DP steels. However, in TRIP steels the retained austenite also progressively transforms to martensite with increasing strain, thereby increasing the work hardening rate at higher strain levels. This is known as the TRIP Effect. This is illustrated in Figure 4, which compares the engineering stress-strain behavior of HSLA, DP and TRIP steels of nominally the same yield strength. The TRIP steel has a lower initial work hardening rate than the DP steel, but the hardening rate persists at higher strains where work hardening of the DP begins to diminish. Additional engineering and true stress-strain curves for TRIP steel grades are shown in Figure 5.

 

Figure 4: TRIP 350/600 with a greater total elongation than DP 350/600 and HSLA 350/450 Reference K-1

Figure 4: TRIP 350/600 with a greater total elongation than DP 350/600 and HSLA 350/450. K-1

 

Figure 5: Engineering stress-strain (left graphic) and true stress-strain (right graphic) curves for a series of TRIP steel grades. Sheet thickness: TRIP 350/600 = 1.2mm, TRIP 450/700 = 1.5mm, TRIP 500/750 = 2.0mm, and Mild Steel = approx. 1.9mm. V-1

Figure 5: Engineering stress-strain (left graphic) and true stress-strain (right graphic) curves for a series of TRIP steel grades. Sheet thickness: TRIP 350/600 = 1.2mm, TRIP 450/700 = 1.5mm, TRIP 500/750 = 2.0mm, and Mild Steel = approx. 1.9mm. V-1

 

 

The strain hardening response of TRIP steels are substantially higher than for conventional HSS, resulting in significantly improved formability in stretch deformation. This response is indicated by a comparison of the n-value for the grades. The improvement in stretch formability is particularly useful when designers take advantage of the improved strain hardening response to design a part utilizing the as-formed mechanical properties. High n-value persists to higher strains in TRIP steels, providing a slight advantage over DP in the most severe stretch forming applications.

Austenite is a higher temperature phase and is not stable at room temperature under equilibrium conditions. Along with a specific thermal cycle, carbon content greater than that used in DP steels are needed in TRIP steels to promote room-temperature stabilization of austenite. Retained austenite is the term given to the austenitic phase that is stable at room temperature.

Higher contents of silicon and/or aluminum accelerate the ferrite/bainite formation. These elements assist in maintaining the necessary carbon content within the retained austenite. Suppressing the carbide precipitation during bainitic transformation appears to be crucial for TRIP steels. Silicon and aluminum are used to avoid carbide precipitation in the bainite region.

The carbon level of the TRIP alloy alters the strain level at which the TRIP Effect  occurs. The strain level at which retained austenite begins to transform to martensite is controlled by adjusting the carbon content. At lower carbon levels, retained austenite begins to transform almost immediately upon deformation, increasing the work hardening rate and formability during the stamping process. At higher carbon contents, retained austenite is more stable and begins to transform only at strain levels beyond those produced during forming. At these carbon levels, retained austenite transforms to martensite during subsequent deformation, such as a crash event.

TRIP steels therefore can be engineered to provide excellent formability for manufacturing complex AHSS parts or to exhibit high strain hardening during crash deformation resulting in excellent crash energy absorption.

The additional alloying requirements of TRIP steels degrade their resistance spot-welding behavior. This can be addressed through weld cycle modification, such as the use of pulsating welding or dilution welding.  Table 1 provides a list of current production grades of TRIP steels and example automotive applications:

Table 1: Current Production Grades Of TRIP Steels And Example Automotive Applications.

Table 1: Current Production Grades Of TRIP Steels And Example Automotive Applications.

 

Some of the specifications describing uncoated cold rolled 1st Generation transformation induced plasticity (TRIP) steel are included below, with the grades typically listed in order of increasing minimum tensile strength and ductility. Different specifications may exist which describe hot or cold rolled, uncoated or coated, or steels of different strengths. Many automakers have proprietary specifications which encompass their requirements.
• ASTM A1088, with the terms Transformation induced plasticity (TRIP) steel Grades 690T/410Y and 780T/440YA-22
• JFS A2001, with the terms JSC590T and JSC780TJ-23
• EN 10338, with the terms HCT690T and HCT780TD-18
• VDA 239-100, with the terms CR400Y690T-TR and CR450Y780T-TRV-3
• SAE J2745, with terms Transformation Induced Plasticity (TRIP) 590T/380Y, 690T/400Y, and 780T/420YS-18

 

Transformation Induced Plasticity Effect

Austenite is not stable at room temperature under equilibrium conditions. An austenitic microstructure is retained at room temperature with the combined use of a specific chemistry and controlled thermal cycle. Deformation from sheet forming provides the necessary energy to allow the crystallographic structure to change from austenite to martensite. There is insufficient time and temperature for substantial diffusion of carbon to occur from carbon-rich austenite, which results in a high-carbon (high strength) martensite after transformation. Transformation to high strength martensite continues as deformation increases, as long as retained austenite is still available to be transformed.

Alloys capable of the TRIP effect are characterized by a high ductility – high strength combination. Such alloys include 1st Gen AHSS TRIP steels, as well as several 3rd Gen AHSS grades like TRIP-Assisted Bainitic Ferrite, Carbide Free Bainite, and Quench & Partition Steels.

 

Back to the Top

 

Complex Phase

Complex Phase

Complex Phase (CP) steels combine high strength with relatively high ductility.  The microstructure of CP steels contains small amounts of martensite, retained austenite and pearlite within a ferrite/bainite matrix.  A thermal cycle that retards recrystallization and promotes Titanium (Ti), Vanadium (V), or Niobium (Nb) carbo-nitrides precipitation results in extreme grain refinement.  Minimizing retained austenite helps improve local formability, since forming steels with retained austenite induces the TRIP effect producing hard martensite.F-11

The balance of phases, and therefore the properties, results from the thermal cycle, which itself is a function of whether the product is hot rolled, cold rolled, or produced using a hot dip process.  Citation P-18 indicates that galvannealed CP steels are characterized by low yield value and high ductility, whereas cold rolled CP steels are characterized by high yield value and good bendability.  Typically these approaches require different melt chemistry, potentially resulting in different welding behavior. 

CP steel microstructure is shown schematically in Figure 1, with the grain structure for hot rolled CP 800/1000 shown in Figure 2.  The engineering stress-strain curves for mild steel, HSLA steel, and CP 1000/1200 steel are compared in Figure 3.

Figure 1: Schematic of a complex phase steel microstructure showing martensite and retained austenite in a ferrite-bainite matrix

Figure 1: Schematic of a complex phase steel microstructure showing martensite and retained austenite in a ferrite-bainite matrix.

 

Figure 2: Micrograph of complex phase steel, HR800Y980T-CP.C-14

Figure 2: Micrograph of complex phase steel, HR800Y980T-CP.C-14

 

Figure 3: A comparison of stress strain curves for mild steel, HSLA 350/450, and CP 1000/1200.

Figure 3: A comparison of stress strain curves for mild steel, HSLA 350/450, and CP 1000/1200.

 

DP and TRIP steels do not rely on precipitation hardening for strengthening, and as a result, the ferrite in these steels is relatively soft and ductile. In CP steels, carbo-nitride precipitation increases the ferrite strength.   For this reason, CP steels show significantly higher yield strengths than DP steels at equal tensile strengths of 800 MPa and greater. Engineering and true stress-strain curves for CP steel grades are shown in Figure 4.

Figure 4: Engineering stress-strain (left graphic) and true stress-strain (right graphic) curves for a series of CP steel grades. Sheet thickness: CP650/850 = 1.5mm, CP 800/1000 = 0.8mm, CP 1000/1200 = 1.0mm, and Mild Steel = approx. 1.9mm.V-3

Figure 4: Engineering stress-strain (left graphic) and true stress-strain (right graphic) curves for a series of CP steel grades. Sheet thickness: CP650/850 = 1.5mm, CP 800/1000 = 0.8mm, CP 1000/1200 = 1.0mm, and Mild Steel = approx. 1.9mm.V-1

 

Examples of typical automotive applications benefitting from these high strength steels with good local formability include frame rails, frame rail and pillar reinforcements, transverse beams, fender and bumper beams, rocker panels, and tunnel stiffeners.

Some of the specifications describing uncoated cold rolled 1st Generation complex phase (CP) steel are included below, with the grades typically listed in order of increasing minimum tensile strength and ductility.  Different specifications may exist which describe hot or cold rolled, uncoated or coated, or steels of different strengths.  Many automakers have proprietary specifications which encompass their requirements.

  • ASTM A1088, with the terms Complex phase (CP) steel Grades 600T/350Y, 780T/500Y, and 980T/700Y A-22
  • EN 10338, with the terms HCT600C, HCT780C, and HCT980C D-18
  • VDA239-100, with the terms CR570Y780T-CP, CR780Y980T-CP, and CR900Y1180T-CPV-3

 

Microstructural Components

Steel grades are engineered to achieve specific properties and characteristics by the manipulation of mill processing parameters to achieve a targeted balance of microstructural components. Among the tools available to the steelmaker are alloy composition, rolling and processing temperatures, and cooling profile.

If steel is slowly cooled, only two components exist at room temperature: ferrite (abbreviated by the Greek letter α) and cementite (iron carbide, Fe3C). Alternating layers of ferrite and cementite appear under a microscope in a pattern similar to Mother-of-Pearl, leading to the term pearlite.

A steel alloy having approximately 0.80% carbon will contain only pearlite in the microstructure. Lower carbon levels create an alloy that combines ferrite and pearlite. Ferrite-pearlite microstructures form the basis of many C-Mn steels and some of the initial HSLA steels. At a given strength level, pearlite limits sheet formability.

At carbon levels below 0.008% or 80 ppm, only ferrite exists. Ferrite is low strength but very ductile, and is the microstructural phase in ultra-low carbon steels.

Additional phases are formed when the cooling profile can be changed. Some modern annealing furnaces are capable of controlling the cooling rate as well as holding at specific temperatures. This ability is a key facilitator in the production of most Advanced High Strength Steels. In addition to ferrite and pearlite, microstructural phases of bainite, austenite, and martensite can be produced, depending on the chemistry and the thermal cycle profile including quench rate and hold temperature.

Bainite is a phase that is associated with enhanced sheared edge ductility. Accelerated cooling in the hot mill run out table allows for the production of Ferrite-Bainite steels.

Austenite is not stable at room temperature under equilibrium conditions. An austenitic microstructure is retained at room temperature with the use of a combined chemistry and controlled thermal cycle. Deforming retained austenite is responsible for the TRIP effect.

Martensite is a very high strength phase, but has limited toughness.  Steels with both ferrite and martensite in the microstructure are known as dual phase steels.  A structure of 100% martensite can be produced directly at those sheet mills having equipment capable of achieving a minimum critical cooling rate. The ductility of this product is not sufficiently high for most stamping operations. However, sheet martensite is well suited for properly designed roll forming applications.

Martensite is the microstructural component of processed Press Hardening Steels. An elevated temperature and a more formable microstructure exist at the time of complex forming of these grades. Rapid cooling while the part is under full press load converts the microstructure to the high strength martensite.