This article summarizes a paper, entitled “Effect of GA-Coating Evolution during Press-Hardening on Fiber Laser Lap Welding Behavior of 22MnB5 Steel”, by M. H. Razmpoosh, et al.R-4

The study investigates the effects of Fe-Zn diffusion layer on laser lap-joining behavior of galvanneal (GA) coated 22MnB5 steel, an Advanced High-Strength Steel designed for the hot forming process.  The results indicate that by using higher press-hardening durations, the weld window shrinks; however, this results in a wider weld bead, and therefore promotes the load-bearing capacity of the joint.

Press-hardened 22MnB5,  2mm sheet steels were used in the present study. The details of the chemical composition and the as-received mechanical properties of the sheets are given in Table 1. The steel sheets were GA-coated with two different initial total coating weights of 100 and 140 g/m2 (Table 2).

Table 1: Chemical Composition (wt.%) and Mechanical Properties of the Experimental PHS

Table 1: Chemical Composition (wt.%) and Mechanical Properties of the Experimental PHS.

.

Table 2: Weight and Chemical Composition of Various GA Coatings used in the Present Study.

Table 2: Weight and Chemical Composition of Various GA Coatings used in the Present Study.

 

Figure 1 demonstrates backscattered scanning electron microscopy (BS-SEM) and Electron probe microanalysis (EPMA) elemental distribution of a representative Fe-Zn DL after press-hardening at 860°C for 4-10 min and corresponding 900°C for 10 min. It has been observed that by increasing the press-hardening time the Zn-content decreases; however, at higher press-hardening temperatures (i.e., 900°C) due to extreme oxidation, the average Zn-content decreases severely.

Figure 1. BS-SEM and EPMA Results of the Press-Hardened Blanks at 860°C [(a) 4 min, (b) 7 min, (c) 10 min, and (d) 900°C for 10 min (DL)].

Figure 1. BS-SEM and EPMA Results of the Press-Hardened Blanks at 860°C [(a) 4 min, (b) 7 min, (c) 10 min, and (d) 900°C for 10 min (DL)].

 

Figure 2 summarizes the effects of press-hardening time and temperature on the thickness of the Fe-Zn DL in two different initial coating weights of 100 and 140 g/m2. With increasing the heat-treatment time at 860°C, the thickness of overall Fe-Zn DL increases. However, specifically at 900°C and longer press-hardening times, the final Fe-Zn DL is not increasing. Moreover, it has been observed that at a constant press-hardening time-temperature, lower initial coating weight results in a lower final Fe-Zn DL thickness.

Figure 2:  DL Thickness vs. Press-Hardening Times at the Experimental Temperature and Initial Coating Weights.mperature and Initial Coating Weights.

Figure 2:  DL Thickness vs. Press-Hardening Times at the Experimental Temperature and Initial Coating Weights.

 

According to Figure 3(a), increasing the press-hardening time at a constant temperature results in wider weld beads. Hence, the fact that failure occurs within the FZ (faying surface) during lap-shear tensile tests justifies the slightly enhanced peak loads [Figure 3(b)].

Figure 3: (a) Joint Width, (b) Peak Load of Lap-Shear Tensile Test vs. Press-Hardening Time, and (c) Schematic of Fe-Zn DL and Laser Interaction.

Figure 3: (a) Joint Width, (b) Peak Load of Lap-Shear Tensile Test vs. Press-Hardening Time, and (c) Schematic of Fe-Zn DL and Laser Interaction.

 

This work concluded the following:

 

  1. The initial GA-coating mainly evolves into a Fe-Zn DL [α-Fe(Zn)] and ZnO after the press-hardening. The thick α-Fe(Zn) phase holding 20-40% Zn; however, it was observed that with increasing press-hardening temperature, due to severity of oxidation Zn-content of the Fe-Zn DL decreases.
  2. Due to higher oxidation, severity at higher press-hardening temperatures, and subsequent lower Zn-content, the sensitivity of the process window is less than 860°C.
  3. Because of intensified Zn-plasma and laser beam interaction, by increasing the press hardening time at a constant temperature of 860°C (higher Fe-Zn DL thickness), joint width increases. This explains higher lap-shear tensile peak loads associated with the higher press-hardening times.
Related Posts
Filter by
Post Page
Press Hardened Steels Joining Laser Welding Arc Welding Coatings Resistance Spot Welding main-blog homepage-featured-top Steel Grades AHSS Blog Joining Dissimilar Materials
Sort by

Role of Coatings in the Formation of Defects in AHSS Welds

A common issue when welding Advanced High-Strength Steels (AHSS) is with protective coatings causing weld defects. A

18

Coating Friction

Friction during the stamping process is a key variable which impacts metal flow. It

18

Coatings

topofpage

18

Coating Effects

One of the methods by which the coatings are applied to the steel sheet surface is through a process called

18

AHSS Corrosion Resistant Coatings

Many steel parts on a vehicle require corrosion protection, regardless of whether they are exposed or unexposed

18

Resistance Spot Welding with Advanced High-Strength Steels: Cold Stamped and Hot Formed

The discussions relative to cold stamping are applicable to any forming operation occurring at room temperature

8

Steel E-Motive Battery Carrier Frame System and Laser Welded Door Ring Feature Part Integration to Reduce Mass and Cost

The Steel E-Motive concept features an innovative battery housing design and laser welded blank door ring created

8